bulletin of the chemical society of Japan, vol. 47(6), 1531—1532 (1974)

A New Lanthanoid Double Trifluoride Compound (Er_{0.3}Nd_{0.7})F₃

Kiyohito Okamura and Seishi Yajima

The Oarai Branch, The Research Institute for Iron, Steel and Other Metals, Tohoku University, Oarai, Ibaraki 311-13 (Received March 30, 1973)

Synopsis: A new compound, (Er_{0.3}Nd_{0.7})F₃, in the ErF₃-NdF₃ system was prepared by the solid state reaction of NdF₃ (hexagonal LaF₃-type) and ErF₃ (orthorhombic YF₃-type). It was found to be of an isostructure with ErF₃ of the space group Pnma. Structural data are compared with those of ErF₃.

The lanthanoid trifluorides from LaF₃ to NdF₃ have the hexagonal phase of LaF₃-type structure in the temperature range, from room temperature to melting. 1-2) Trifluorides of elements from Sm to Lu, with orthorhombic YF3-type structure, exhibit equilibrium dimorrphic transformation at high temperatures. Compounds from SmF₃ to HoF₃ turn into the hexagonal LaF₃-type, and compounds from ErF₃ to LuF₃ into the hexagonal YF₃-type¹⁻²⁾ (trifluoride with the hexagonal LaF₃-type and that with the orthorhombic YF₃type are abbreviated as $(LnF_3)_{hex}$ and $(LnF_3)_{orth}$, respectively). The lanthanoid trifluorides of the same structure have a wide solid solubility range,³⁾ while the solubility of (LnF₃)_{orth} in (LnF₃)_{hex} differs with the lanthanoid element in (LnF₃)_{orth}. However, lanthanoid double trifluoride compounds, such as (Er_x. $Nd_y)F_3$, are not found in the $(LnF_3)_{orth}-(LnF_3)_{hex}$ system.

The present work was carried out in order to find new lanthanoid double fluoride compounds consisting of components (LnF₃)_{orth} and (LnF₃)_{hex}. Such a compound could be obtained by a solid phase reaction at high temperatures between the lanthanoid trifluorides having a similar radius of the Ln³⁺ ions. Of the (LnF₃)_{orth} type compounds, ErF₃ has the highest transition temperature 1075 °C, and of the (LnF₃)_{hex} compounds, the radius of Nd³⁺ is closest to that of Er³⁺ in ErF₃, compound NdF₃ having a hexagonal phase up to its melting temperature 1380 °C. Thus, ErF₃ and NdF₃ were considered to be the most suitable combination.

Experimental

Erbium and neodymium trifluorides were prepared as described previously.⁴⁾ Powders (325 mesh under) of ErF₃ and NdF₃ were mixed in various molar ratios and pressed into pellets of 10 mm diameter and 10 mm height. These were placed in a platinum boat kept in an electric furnace, heated

at 1000 °C for five hours in a highly pure argon stream, and cooled slowly to room temperature. Equilibrium was considered to have been established when the X-ray diffraction patterns showed no change on further heating. The crystal structure of the heated specimen was determined from X-ray diffraction patterns taken at room temperature, using Ni-filtered CuK α radiation (λ =1.5418 Å) and an NaI(Tl) counter connected to a pulse-height analyzer.

Results and Discussion

A new compound was obtained by heating a powder mixture of ErF₃ and NdF₃ with molar ratio 3:7. The X-ray diffraction patterns are assigned to an orthorhombic unit cell; the lattice constants are $a=6.660\pm$ $0.003 \text{ Å}, b=7.053\pm0.005 \text{ Å} \text{ and } c=4.393\pm0.002 \text{ Å}.$ Chemical analysis of the compound was made by the X-ray fluorescence method since ErF₃ and NdF₃ were found to evaporate slightly during the course of heat treatment. The analysis shows the ratio Er: Nd to be $3.06\pm0.10:6.94\pm0.09$. The compound is represented by (Er_{0.3}Nd_{0.7})F₃. The crystal is isostructural with ErF₃. The relative intensities of the X-ray diffraction patterns for $(Er_{0.3}Nd_{0.7})F_3$ and ErF_3 are almost the same, but the lattice constants a and b of the former are greater by 5% and 3%, respectively, while c is greater by only 0.2%. The positional and isotropic thermal parameters of $(Er_{0.3}Nd_{0.7})F_3$ were refined by the least-squares by means of powder reflections. The initial atomic parameters of ErF₃⁵⁾ with space group Pnma were used. The occupancies of Er and Nd at the lanthanoid atomic sites (abbreviated as \overline{Ln}) were fixed at the ratio 3.06: 6.94. The atomic scattering factors were corrected for the anomalous dispersion effect due to $\Delta f'$ and $\Delta f''$ values (International Tables for X-Ray Crystallography, Vol. II). The final structure is given in Table 1 with that of ErF₃. The final calculated intensities are compared with the observed values (I_0) in Table 2. The reliability factor, $R = (\sum_{k \neq l} |I_0 - I_c|) / \sum_{k \neq l} I_0$, is 10.10% for the observed reflections.

The fluorine atoms are displaced to some extent from their sites in ErF₃, while the lanthanoid atoms are only slightly displaced from the erbium atom sites in ErF₃. The distances between the $\overline{\text{Ln}}$ and fluorine

Table 1. Comparison of atomic parameters of $(\mathrm{Er_{0.3}Nd_{0.7}})F_3(I)$ and $\mathrm{ErF_3}(II)$

Atomic site	Position	x_{j}	Уi	$z_{\mathtt{j}}$	$B_{ m j}$	
Ln in I Er in II	4c	0.360 ± 0.001 0.367	1/4 1/4	0.050 ± 0.001 0.058	0.46±0.01	
$F(1) \begin{cases} in I \\ in II \end{cases}$	4c	0.543 ± 0.002 0.528	1/4 1/4	0.616 ± 0.002 0.601	0.90 <u>±</u> 0.01	
$\mathbf{F}(2) \begin{cases} \text{in I} \\ \text{in II} \end{cases}$	8d	0.146 ± 0.002 0.165	0.080 ± 0.001 0.060	$0.380 \pm 0.002 \\ 0.363$	0.90 <u>±</u> 0.01	

Table 2. Observed $(I_{\rm o})$ and calculated intensities $(I_{\rm c})$ for the X-ray powder patters of $({\rm Er_{0.0}Nd_{0.7}}){\rm F_3}$

hkl	$d_{\mathrm{cal}}(\mathrm{\AA})$	$d_{\mathrm{obsd}}(\mathrm{\AA})$	$I_{ m o}$	$I_{ m c}$		hkl	$d_{\mathrm{cal}}(\mathrm{\AA})$	$d_{\mathrm{obsd}}(\mathrm{\AA})$	$I_{\rm o}$	$I_{ m c}$	
011	3.731	3.744	40	40		232	1.446	1.447	30	31	
101	3.670	3.684	154	161		013)	1.434			16)	
020	3.527	3.539	175	179		322}	1.428	1.430	27	3}	22
111	3.225	3.265	244	274		103)	1.430			3)	
210	3.011	3.022	126	143		113	1.403	1.404	7	10	
201	2.655	2.662	6	5		042	1.357	1.376	15	14	
121	2.543	2.549	45	57		430	1.359	1.359	5	6	
211	2.485	2.490	5	7		142)	1.347			10)	
002	2.199	2.202	24	34		051}	1.343	1.346	24	1}	20
221	2.121	2.124	35	34		203)	1.340			9)	
102	2.088	2.090	5	4		402)	1.327	1 000	1.7		
112	2.002	2.004	43	47		123}	1.325	1.326	17	11) 6}	17
301)	1.981	1.983	188	79)	192	151)	1.317				
131∫	1.980			113}	134	341}	1.317	1.317	47	17 25	44
230	1.921	1.923	76	84		213)	1.317			2)	
311	1.908	1.910	30	30		431)	1.298			$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	
022	1.866	1.868	24	38		332}	1.300	1.299	21	3}	16
122	1.797	1.798	33	27		250)	1.299			12)	
212	1.776	1.776	57	59		511)	1.254	1.255	44	18)	44
040	1.763	1.764	30	25		223	1.253			26	
321	1.728	1.728	57	58		422)	1.242	1.244	25	16) 5}	21
400	1.665	1.666	19	23		033	1.243			3)	
141	1.589	1.589	25	16		440	1.211	1.211	8 6	9	
132	1.561	1.562	10	8		521	1.199	1.199			
312)	1.524			17)		060) 152)	1:176 1.169	1.177	17	10) 7}	17
411	1.520	1.521	42	9	45	432)	1.169			7) 2)	
331)	1.515	1 506	10	19)		351	1.130	1.156	10	2) 5}	7
420	1.506	1.506	18	17		252	1.118	1.120	19	13	
241	1.469	1.469	10	8		404	1.110	1.120	1.5	10	

atoms lie in the range 2.234 Å–2.771 Å, and those between fluorine atoms in the range 2.398 Å–3.083 Å. The corresponding distances in ${\rm ErF_3}$ are 2.248 Å–2.589 Å, and 2.552 Å–2.846 Å. The fluctuations of the interatomic distances from the average (${\rm Ln-F}$; 2.332 Å, F-F; 2.679 Å) are larger than the corresponding deviations from the mean values (${\rm Ln-F}$; 2.284 Å, F-F; 2.686 Å) in ${\rm ErF_3}$. It seems that the atomic arrangement in (${\rm Er_{0.3}Nd_{0.7}}$)F₃ is more strongly distorted than that in ${\rm ErF_3}$.

References

- 1) F. H. Spedding and A. H. Daane, "The Rare Earth," John Wiley & Sons, Inc., New York, N. Y. (1961), p. 78.
- 2) R. E. Thoma and G. D. Brunton, *Inorg. Chem.*, 5, 1937 (1966).
- 3) D. A. Jones and W. A. Shand, J. Crystal Growth, 2, 361 (1968).
- 4) K. Niihara and S. Yajima, This Bulletin, 44, 643 (1971).
- 5) A. Zalkin and D. H. Templeton, J. Amer. Chem. Soc., 75, 2453 (1953).